ATP is essential for protein translocation into Escherichia coli membrane vesicles.

نویسندگان

  • L Chen
  • P C Tai
چکیده

The energy requirement for translocation of alkaline phosphatase and the outer membrane protein OmpA into Escherichia coli membrane vesicles was studied under conditions that permit posttranslational translocation and, hence, prior removal of various components necessary for protein synthesis. Translocation could be supported by an ATP-generating system or, less well, by the protonmotive force generated by D-lactate oxidation; the latter might act by generating ATP from residual bound nucleotides. However, when protonmotive force inhibitors were used or when ATP was further depleted by E. coli glycerol kinase, D-lactate no longer supported the translocation. Furthermore, ATP could still support protein translocation in the presence of proton uncouplers or with membranes defective in the F1 fraction of the H+-ATPase. We conclude that ATP is required for protein translocation in this posttranslational system (and probably also in cotranslational translocation); the protonmotive force may contribute but does not appear to be essential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP.

The energy requirement for protein translocation across membrane was studied with inverted membrane vesicles from an Escherichia coli strain that lacks all components of F1F0-ATPase. An ompF-lpp chimeric protein was used as a model secretory protein. Translocation of the chimeric protein into membrane vesicles was totally inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone (CC...

متن کامل

SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane.

SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction....

متن کامل

The reconstituted Escherichia coli MsbA protein displays lipid flippase activity

The MsbA protein is an essential ABC (ATP-binding-cassette) superfamily member in Gram-negative bacteria. This 65 kDa membrane protein is thought to function as a homodimeric ATP-dependent lipid translocase or flippase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. We have previously shown that purified MsbA from Escherichia coli displays high ATPase ac...

متن کامل

Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles

Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...

متن کامل

Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner.

Everted membrane vesicles were prepared from Escherichia coli cells containing either overproduced amounts (OP-membrane vesicles) or normal amounts (normal membrane vesicles) of SecY and SecE, both of which are essential components of the protein translocation apparatus. The rates of translocation of pro-OmpA were similar in the two types of membrane vesicles, whereas translocation ATPase activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 13  شماره 

صفحات  -

تاریخ انتشار 1985